

Boosting Soft Q-Learning by Bounding

<u>Jacob Adamczyk</u>, Volodymyr Makarenko, Stas Tiomkin, Rahul Kulkarni

Soft Q-Learning

$$Q^*(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim p(\cdot|s,a)} V^*(s')$$
$$V^*(s) = \beta^{-1} \log \mathbb{E}_{a \sim \pi_0} \exp \beta Q^*(s',a')$$

New Bounds (Intuition)

 $|Q^*(s,a) - BQ(s,a)| \le \mathcal{O}\left(H\sqrt{\mathcal{L}}\right)$

New Bounds (Intuition)

One iteration of Bellman produces double-sided bounds on Q*, with error scaling as the Bellman residual

New Bounds

Theorem 1. Consider an entropy-regularized MDP $\langle S, A, p, r, \gamma, \beta, \pi_0 \rangle$ with optimal value function $Q^*(s, a)$. Let any bounded function Q(s, a) be given. Denote the corresponding state-value function as $V(s) \doteq 1/\beta \log \mathbb{E}_{a \sim \pi_0} \exp \beta Q(s, a)$. Then, $Q^*(s, a)$ is bounded by:

$$r(s,a) + \gamma \left(\mathop{\mathbb{E}}_{s' \sim p} V(s') + \frac{\inf \Delta}{1 - \gamma} \right) \le Q^*(s,a) \le r(s,a) + \gamma \left(\mathop{\mathbb{E}}_{s' \sim p} V(s') + \frac{\sup \Delta}{1 - \gamma} \right)$$
(2)

where

$$\Delta(s,a) \doteq r(s,a) + \gamma \mathop{\mathbb{E}}_{s' \sim p} V(s') - Q(s,a).$$

Q-Learning by Bounding

Clipping During Training

Clipping During Training

Clipping is All You Need*

Clipping is All You Need*

Future Work

- Use model-based techniques for extending advantage in deep RL
- Derive even tighter bounds

Pseudocode

8:	Take action a : observe reward r , next state s' , and termination signal
9:	Compute state value function: $V(s') = \beta^{-1} \log \mathbb{E}_{a' \sim \pi_0} \exp \beta Q(s', a')$
10:	Calculate new bounds $\{L'(s, a), U'(s, a)\}$ using Q' in Equation 2.
11:	Tighten lower bounds: $L'(s, a) = \max \{L'(s, a), L(s, a)\}$
12:	Tighten upper bounds: $U'(s, a) = \min \{U'(s, a), U(s, a)\}$
13:	Clip the Q-values: $Q'(s, a) = \operatorname{clamp} (Q(s, a), \min = L'(s, a), \max = U'(s, a))$
14:	if $Q' == Q$ then
15:	// No clipping has been applied, resort to TD-update:
16:	Compute the TD error: $\delta = r + \gamma \cdot (1 - \text{terminated}) \cdot V(s') - Q(s, a)$
17:	Update Q-table: $Q'(s,a) \leftarrow Q'(s,a) + \alpha \delta$
18:	end if

Theorem 2 (Informal). Consider an MDP with a bounded continuous state and action space, $S \times A \subset \mathbb{R}^d$, with stochastic dynamics. Suppose an L_Q -Lipschitz function Q(s, a)is given to generate double-sided bounds on the optimal value function, denoted $Q^*(s, a)$. Let $\varepsilon > 0, \delta > 0$ be given and define the horizon $H = (1 - \gamma)^{-1}$, and sample budgets: $|\mathcal{B}| \geq \mathcal{O}\left(\varepsilon^{-d}\log\delta^{-1}\right), n_S \geq \mathcal{O}\left(H^2\varepsilon^{-2}\log\delta^{-1}\right), n_A \geq \mathcal{O}\left(e^{2\beta(H-\varepsilon)}\log\delta^{-1}\right).$ Suppose n_S samples are used to estimate the expectation over next-states and n_A samples are used to estimate the expectation over next-actions in the soft state-value function. Denoting $\hat{V}, \hat{\Delta}$ as the quantities estimated from samples, the following bounds

$$Q^*(s,a) \le r(s,a) + \gamma \left(\frac{1}{n_{\mathcal{S}}} \sum_{i=1}^{n_{\mathcal{S}}} \hat{V}(s'_i) + \frac{\max_{(s,a) \in \mathcal{B}} \hat{\Delta}(s,a) + \varepsilon}{1 - \gamma}\right)$$
(4)

$$Q^*(s,a) \ge r(s,a) + \gamma \left(\frac{1}{n_{\mathcal{S}}} \sum_{i=1}^{n_{\mathcal{S}}} \hat{V}(s'_i) + \frac{\min_{(s,a) \in \mathcal{B}} \hat{\Delta}(s,a) - \varepsilon}{1 - \gamma}\right)$$
(5)

hold with probability at least $1 - \delta$.