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Soft Q-Learning
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New Bounds (Intuition)
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Q"(s,0) - BQ(s,0)| < O (HVL)




New Bounds (Intuition)
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Arbitrary function

=

Q"(s,0) = BQ(s,0)] < O (HVE)

One iteration of Bellman produces double-sided bounds on Q7

with error scaling as the Bellman residual
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Theorem 1. Consider an entropy-reqularized MDP (S, A,p,r,~, 3, 7o) with optimal value
function Q*(s,a). Let any bounded function Q(s,a) be given. Denote the corresponding
state-value function as V(s) = 1/BlogE4r, exp BQ(s,a). Then, Q*(s,a) is bounded by:
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where

A(s,a) =r(s,a) + fyS,IEpV(s’) — Q(s,a).




Q-Learning by Bounding

Use Bellman to
“kick” Q only
when stuck

— Q™ (s,a)
— LM (s,a), UM (s,a)
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Clipping is All You Need’ B
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Clipping is All You Need”
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Model-free algorithm
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Future Work
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* Use model-based techniques for extending advantage in deep RL

* Derive even tighter bounds
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Thank you!
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Take action a: observe reward r, next state s’, and termination signal
Compute state value function: V(s') = 87! log Ey/mr, €xp BQ(s',a’)
Calculate new bounds {L'(s,a), U'(s,a)} using ' in Equation 2.
Tighten lower bounds: L/(s,a) = max {L/(s,a), L(s,a)}
Tighten upper bounds: U’(s,a) = min {U’(s,a), U(s,a)}
Clip the Q-values: @’(s,a) = clamp (Q(s,a), min = L'(s,a), max = U'(s,a))
if Q' == (@ then
// No clipping has been applied, resort to TD-update:
Compute the TD error: § = r + 7 - (1 — terminated) - V(s') — Q(s, a)
Update Q-table: Q'(s,a) + Q'(s,a) + ad
end if
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Theorem 2 (Informal). Consider an MDP with a bounded continuous state and action
space, S x A C R%, with stochastic dynamics. Suppose an Lg-Lipschitz function Q(s,a)
is given to gemerate double-sided bounds on the optimal value function, denoted Q*(s,a).
Let € > 0,6 > 0 be given and define the horizon H = (1 — )™, and sample budgets:
B > O(e7%logd~!), ns > O (H?2logéd™ ), na> 0O (e2PH=)]ogst).

Suppose ns samples are used to estimate the expectation over next-states and n4 samples are
used to estimate the expectation over next-actions in the soft state-value function. Denoting

A

V', A as the quantities estimated from samples, the following bounds

1 2s, max(sa)elgﬁ(s,a)—l—e)
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. 1 <&~ min , s A(s,a) — ¢
@ (5,0) 2 (5,0) + 7 = 3 Vo) 4 TonSE R O ZE) 5
i=1

hold with probability at least 1 — 9.
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