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Q-Learning By BoundingAbstract
An agent's ability to leverage past experience is 
critical for efficiently solving new tasks. Prior work 
has focused on using value function estimates to 
obtain zero-shot approximations for solutions to a 
new task. In soft Q-learning, we show how any 
value function estimate can also be used to derive 
double-sided bounds on the optimal value function. 
The derived bounds lead to new approaches for 
boosting training performance which we validate 
experimentally. Notably, we find that the proposed 
framework suggests an alternative method for 
updating the Q-function, leading to improved 
performance.

Main Result
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Clip the 𝑄-values based 
on current bounds

Calculate new (tightest) 
upper and lower bounds
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Clipping did not occur:
Use TD update and continue

Initialize 𝑄-values and 
calculate bounds 

Boosted Training – Tight Bounds

Conclusions
• Method for generating progressively tighter bounds without prior knowledge
• Our clipping method pushes away from invalid 𝑄-values, whereas TD pulls toward valid 𝑄-values
• We find the former (clipping) to be significantly faster as it quickly reduces potential solution space
• We derive theoretical results and run initial validation experiments in the deep RL setting
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Use Bellman 
to “kick” 𝑄 
when stuck

𝑄 ! (𝑠, 𝑎) 𝐿 ! ≤ 𝑄∗ ≤ 𝑈 !

Double-sided Bound on 𝑄∗(𝑠, 𝑎)
 From Any Estimate '𝑄(𝑠, 𝑎)

As 𝑛 → ∞:	𝐿 ! , 𝑈 ! → 𝑄∗

Clipping is All You Need*


