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An agent's ablility to leverage past experience is
critical for efficiently solving new tasks. Prior work

has focused on using value function estimates to -\ =

obtain zero-shot approximations for solutions to a

new task. In soft Q-learning, we show how any

value function estimate can also be used to derive ——IN E— m— — m— m—
double-sided bounds on the optimal value function.

The derived bounds lead to new approaches for

boosting training performance which we validate J \ ~J

experimentally. Notably, we find that the proposed

framework suggests an alternative method for Initialize Q-values and Clip the Q-values based Calculate new (tightest) Clip the Q-values based on Calculate new (tightest) Clipping did not occur:

up?fating the Q-function, leading to improved calculate bounds on current bounds upper and lower bounds current bounds upper and lower bounds ~ Use TD update and continue
performance.
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