
Reinforcement Learning 
and

Large Deviations

Jacob H. Adamczyk
17 October 2022

Applied Physics PhD Qualifying Exam



Introduction

• Reinforcement Learning (RL), a subset of AI, has had great success in 
the past decade.
• Large Deviations (LD) theory, an analytical framework for studying 

non-equilibrium stat. mech. (NESM), gives a new way to describe the 
RL problem
• In applying such physics-based analysis to RL, we aim to gain insight 

on the RL problem

Physics AI



Overview

I. Introduce Reinforcement Learning
a. Markov Decision Process model
b. Solution methods
c. Extensions of “standard” RL

II. Introduce Large Deviations

a. Rate function, cumulant generating function
b. Show equivalence to RL problem

III. Exhibit connections and applications



Reinforcement Learning 



From DeepMind’s blog: https://www.deepmind.com/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules

RL success over past ~5 years due to the advent of deep neural networks 

https://www.deepmind.com/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules


Motivation for RL

Why should physicists care about RL?
ØRL is more than games or robotics

• RL problem can be mapped to NESM
• RL as a direct tool for physics problems
• RL can give insight to Perron-Frobenius theory (well-employed in 

modeling) 



Goal of Thesis

To further develop and exploit this newfound bridge:

RL NESM



Reinforcement Learning

• Reinforcement Learning (RL) is a paradigm created to solve decision-
making problems

Basic Idea:
• An agent interacts with the environment
• Positive behaviors are reinforced relative to undesirable behaviors
• Reinforcement is implemented via a reward function

• After many interaction-reinforcement cycles, the agent should learn 
to “successfully” interact with the environment 



Reinforcement Learning

Two immediate questions arise: 

How do we model the problem?
&

How do we derive solutions?



Markov Decision Process

• The current state (s) and action (𝑎) are used to label the agent’s steps in a 
trajectory: 𝜏 = 𝑠!, 𝑎!, 𝑠", 𝑎", …
• We model the transition dynamics as having the Markov property;

• Dynamics (𝑝) can be either stochastic or deterministic

• Want “good” policy 𝜋(𝑎|𝑠) which chooses action at each state

“Reinforcement Learning: An Introduction”, Book by Andrew Barto and Richard S. Sutton. 2018



Solving the RL Problem

𝑄! 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾𝔼"!~$𝔼%!~!𝑄!(𝑠′, 𝑎′)

Reward for current 
state and action

Expectation over 
next possible states

“Discount factor” 
𝛾 ∈ (0,1)

Expectation over 
next possible actions

Following a policy 𝜋 𝑎 𝑠 , what is the value of starting in state 𝑠 and taking an 
action 𝑎? 

How much is a policy worth?

Policy Evaluation: Discounted future expected value

Value 
function



Solving the RL Problem

What does the solution look like?
We need to know the decision-making strategy (policy) which attains the highest 
expected value

Formulate the following objective function:

𝐽 𝜋 = 𝔼!~#,%&
&'(

)

𝛾&𝑟 𝑠&, 𝑎&

Correspondingly, our optimization problem is:
𝜋∗ = argmax

+
𝐽 𝜋

Trajectories induced by 𝜋, 𝑝; 
given an initial state and action

𝑠

𝑎



Solving the RL Problem

The (traditional) way of solving the RL problem is via the Bellman 
optimality equation:

𝑄∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾𝔼.!~ 0 (max12
𝑄∗ 𝑠′, 𝑎′ )

Once we have 𝑄∗, we can calculate the optimal policy:

𝜋∗ 𝑎 𝑠 = argmax
1

𝑄∗ 𝑠, 𝑎

Take actions in a “greedy” fashion

“Greedy” policy



Solving the RL problem

How to solve this nonlinear functional equation?

𝑄∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾𝔼-$~ / (max01
𝑄∗ 𝑠′, 𝑎′ )

In the simplest case (model-based, tabular/discrete), one can iterate the Bellman 
backup equation: 

𝑄(345) 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾𝔼-$~ / (max01
𝑄(3) 𝑠′, 𝑎′ )

until convergence, using an arbitrary initialization, 𝑄 3 (𝑠, 𝑎)



Variants on “Standard” RL

Next, introduce two variations on the standard problem set up:

Entropy-Regularized
RL

Average-Reward 
RL



Variant 1: Entropy-Regularized RL



Entropy-Regularized RL

Energy minimization → Free energy minimization

• Robust to perturbations
• Less likely to get trapped in local minima 
•More exploratory



Standard RL Entropy-Regularized RL

Trained and evaluated 
without obstacle:

Trained without
obstacle, evaluated 
with obstacle:



Standard RL Entropy-Regularized RL

https://bair.berkeley.edu/blog/2021/03/10/maxent-robust-rl/

https://bair.berkeley.edu/blog/2021/03/10/maxent-robust-rl/


Entropy-Regularized RL

Entropy regularization “softens” the Bellman optimality equation:

*Note that as 𝛽 → ∞, the original objective is recovered

𝑄∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾𝔼"4~$
1
𝛽 log 𝔼%4~&5 exp 𝛽𝑄

∗ 𝑠′, 𝑎′

Previously max! 𝑄∗ 𝑠′, 𝑎′



Entropy-Regularized RL

Rather than maximizing rewards alone, we can penalize based on an 
“information” or entropy cost based on how far away the optimal 
policy is from a reference policy, 𝜋:

• Update the objective with an entropic cost

𝐽 𝜋 = 𝔼; 2
<=5

>

𝛾< 𝑟 𝑠< , 𝑎< +
1
𝛽 log

𝜋 𝑎< 𝑠<
𝜋: 𝑎< 𝑠<

“Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review” Sergey Levine. 2018. Arxiv:abs/1805.00909



Variant 2: Average-Reward RL



Average-Reward RL

Common wisdom for choosing 𝛾:

“Make 𝜸 as close to 1 as possible!!!”



Average-Reward RL

• Prefer long-term goals equally to short-term goals
• Total energy of a trajectory matters
• Timestep shouldn’t influence 𝐸 (time-homogeneity)

• 𝛾 is an unnecessary hyperparameter
• Historically 𝛾 was introduced to guarantee convergence



Average-Reward RL

Rather than (artificially) discounting, consider average reward 
accumulated:

𝐽 𝜋 = lim
;→=

𝔼>~0,+
1
𝑁
<
?@!

;

𝑟 𝑠?, 𝑎?

Our goal is to maximize this reward rate 𝐽(𝜋) by choosing a good 𝜋.

• We shall also assume deterministic dynamics hereon

Mahadevan, S. Average reward reinforcement learning: Foundations, algorithms, and empirical results. Mach Learn 22, 159–195 (1996)
Wan Y., Naik A., Sutton R. Learning and Planning in Average-Reward Markov Decision Processes. (2020)



Average-Reward and Entropy-Regularized RL

Can we merge the two flavors? 
• Previously not done, although both have their own benefits: softening + 

physicality

This turns out to be the natural problem formulation to approach with 
non-equilibrium statistical mechanics (NESM)

Robustness,
Flexibility

Physical interpretation,
Remove hyperparam.



Average-Reward and Entropy-Regularized RL
We get all the previous benefits of both variants, and moreover:

• Another hyperparameter can be reduced 
• LDT gives meaning to 𝛽 – a control parameter to set average energy

• Can use known tools from NESM
• Cloning algorithm (importance sampling)
• Donsker-Varadhan variational form
• Large deviations results



Statistical Mechanics

Basic Outline:
1. (Unweighted) trajectory distribution (following some 𝜋:)
2. Want to probe rare events (lower avg. 𝐸(𝜏)):
• Control dynamics s.t. 𝐸 𝜏 A ≪ 𝐸 𝜏 3

3. Equivalence of ensembles:

Δ𝑥 # > 0

Δ𝑥 $ = 0

𝑋&|𝒜' ≅ 𝑌&
M.C. conditioned 
(on rare event)

Unconditioned
M.C.

𝑥

𝑡



Large Deviations Theory

1. Working in the unconstrained (biased) ensemble is easier
• c.f. canonical vs microcanonical

2. Biased trajectory probability:
• 𝑃3 𝜏 → !

G
𝑃3 𝜏 𝑒HIJ >

• 𝛽 corresponds to a choice of 𝐸 𝜏 A = − K LMN G
KI

• Define the free energy −𝛽𝐹 ≐ log 𝑍
3. Legendre-Fenchel transform of 𝐹(𝛽) → 𝐼(𝐸)
• Can also use 𝐹 as the cumulant generating function

4. The optimal policy and reward rate (𝝅∗, 𝑭(𝜷)) are dominant e.val
and e.vec of tilted generator (2.)

Give higher weight to 
trajectories w/ lower 𝐸



LDT Example

CLT

CLT



Connections: NESM → RL

• Can use cloning method to find 𝜃(𝛽) to solve distributional RL
• Can invent algorithms for solving the avg. rwd. entropy-reg RL 
• log 𝑢 − 𝜒
• 𝑢 − 𝜃

• Bogoliubov inequality over trajectories (rather than config.)
• Connection to Jarzynski relation in the quenched limit



Connections: RL → NESM

• Policy Improvement Theorem for driven matrix
• Iterated Bogoliubov (can improve the bound)
• Can use RL techniques (FA’s) to solve big LD/spectral problems1

• Reward Shaping (changing the energy landscape in a way that leaves 
the NESM quantities invariant

1Ariel Barr, Willem Gispen, Austen Lamacraft Proceedings of The First Mathematical and Scientific Machine Learning Conference, PMLR 107:635-653, 2020.



Applications

In Physics:
• Quantum entanglement cooling
• Bogoliubov inequality for trajectories
• Biological Networks
• Spectral problems (ground state)
• New algorithms inspired by RL (driven dynamics improvement)



Applications

In Reinforcement Learning:
• Compositionality
• Reward Shaping
• Gauge invariance in RL
• New RL algorithms inspired by NESM
• Distributional RL



Conclusions

There is a connection between ML and physics that can be further 
investigated and exploited; hopefully in a positive-feedback loop style



Extra Slides



LDT Example

1. Start with a random variable:
• 𝑝(𝑋P = 𝑥) = !

Q
𝑒HR/Q

• i.e. 𝑋P ~ ℰ(𝜇)
2. Choose a “time-integrated observable”:
• Sample Mean, 𝑆T =

!
T
∑P@!T 𝑋P

3. Calculate scaled-cumulant generating function (scgf):
• 𝜃 𝛽 = lim

T→=
!
T
log⟨𝑒HTIU"⟩

4. Obtain the LDT rate function 𝐼(𝑠) as the Legendre-Fenchel transform:
• 𝑃 𝑆T = 𝑠 ~ 𝑒HTV(.)



LDT Example

CLT

CLT


