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4 Abstract A

In RL, the ability to utilize prior knowledge from previously solved tasks can allow agents to quickly solve new problems. In some cases, these new problems may be approximately solved by
composing the solutions of previously solved primitive tasks. Otherwise, prior knowledge can be used to shape the reward function in a way that leaves the optimal policy unchanged but
enables quicker learning. In this work, we develop a general framework for reward shaping and task composition in entropy-regularized RL.
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