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Abstract
In RL, the ability to utilize prior knowledge from previously solved tasks can allow agents to quickly solve new problems. In some cases, these new problems may be approximately solved by 

composing the solutions of previously solved primitive tasks. Otherwise, prior knowledge can be used to shape the reward function in a way that leaves the optimal policy unchanged but 
enables quicker learning. In this work, we develop a general framework for reward shaping and task composition in entropy-regularized RL.
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How can prior knowledge assist the agent in 
solving new tasks?
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Entropy regularization alters the 
objective function

Regularized RL induces stochastic optimal policies which are 
robust to perturbations[1] and allows for composition of basic 
behaviors[2]

By solving a task with reward function 𝜅 = 𝑟̃ − 𝑟 and 
a prior policy 𝜋∗, we can use prior knowledge to 
access the solution to the desired task.

For the solved task, set 𝜋∗ = 𝜋" and 𝑉∗ 𝑠 = Φ 𝑠 . 
Then the corresponding reward function[4] is: 

𝑟 = Φ 𝑠 − 𝛾𝔼Φ(𝑠#)
The auxiliary task’s reward function is thus:

𝜅 = 𝑟̃ + 𝛾𝔼Φ 𝑠# − Φ 𝑠

Since 𝜋$∗ = )𝜋∗, this result implies potential-based 
reward shaping[3] holds in entropy-regularized RL.

We carry out a similar analysis with multiple primitive 
tasks and a “composite” task of interest, generalizing the 

work of [5] and yielding:

𝜅 = 𝑓 {𝑟%(𝑠, 𝑎)} + 𝛾𝔼𝑉& 𝑠# − 𝑓({𝑄%∗(𝑠, 𝑎)})

𝑉& 𝑠 =
1
𝛽 log 𝔼'~)! exp 𝛽𝑓({𝑄%

∗(𝑠, 𝑎)})

A similar auxiliary task can be defined for changes in 
dynamics. Combined with the result for a difference in 

rewards, we find:

In the future we would like to study the cases of continuous 
states and actions with function approximators, standard RL 
(𝛽 → ∞), and compositionality of tasks with variable 
dynamics.
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Solving tasks in one setting (𝑝) provides solutions 
under a different transition dynamics (𝑞).
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