
Abstract
In recent years, the study of nanodevices such as superconducting quantum interference devices (SQUIDs) has increased in popularity due to their usage in magnetometry, for example of the magnetism of nanoparticles. Particularly, SQUIDs have the capability of measuring small 
changes in magnetic field and changes in magnetization at the level of a few Bohr magnetons. Electrical measurements of a SQUID, which is shunted with an on-chip Au resistor, are shown in the normal and superconducting states, at temperatures down to 4 K. Stable critical currents and 
hysteretic voltage-current characteristics are observed. The SQUID holder is fitted within a custom-made solenoid to control the magnetic flux passing through the SQUID. Data and corresponding theory showing the dependence on the device’s critical current is presented as well as a 
discussion of these results.
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An example of a 
superconducting 
nano-device is a 
SQUID[1][2] (Fig. 1), 
or 
Super-conducting 
QUantum 
Interference 
Device. 

 

Figure 2: Schematic of the 
configured dipstick
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• Use the apparatus in full on new sample devices
• The dipstick has since been used to measure resistance 

values of superconducting carbon fibers (R. Ganguly)
• Consider angled flux and penetration depth for more 

accurate loop area
• Include self-inductance of the loop[2] and mutual inductance 

with solenoid
• Perform multiple calibrations with different samples
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The device uses Josephson Junctions[5] to create 
detectable interference patterns in electric 
current.

Applying magnetic flux through a SQUID loop 
(Fig. 1) induces a current, so we can see the 
effect of B-field on electronic samples.
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Figure 4: As dictated by BCS theory[5], Cooper pairs of electrons tunnel 
through the junction barrier. Although the typical boundary conditions 
are met, the phase of the electron’s wavefunction may change. Property 
of [6].  

Figure 7 (left): SQUID being used in D-Wave quantum computer[7]. 
Figure 8 (above): SQUID array being used in MRI machine[8]
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