

# **Towards Optimizing Synthesis Temperature for** Microgels with Large Degree of Deswelling

Krista G. Freeman, Jacob H. Adamczyk, and Kiril A. Streletzky Department of Physics, Cleveland State University



## Abstract

Polysaccharide microgels have been synthesized at various temperatures (Tsyn) above the LCST of the parent polymer. Microgel structure and dynamics below and above the corresponding volume phase transition has been studied with light scattering. All microgels were found to undergo a reversible 15-50-fold deswelling in volume. However, the size distribution, structure, dynamics, and deswelling ability of microgels were found to strongly depend on synthesis temperature. In this work, the attempt was made to optimize the synthesis temperature to yield more monodisperse microgels with a larger degree of deswelling and to understand the role of the Tsyn on the density of microgels.

## **Polysaccharide Microgels**

□ **Microgels** are gel clusters formed by the chemical crosslinking of polymer chains We synthesized microgels with <u>hydroxypropylcellulose (HPC), an FDA-approved</u> amphiphilic polysaccharide

## Using SLS and DLS to explore the effect of T<sub>svn</sub> on:



Since microgels inherit the properties of their parent polymer, our particles exhibit a volume phase transition at high temperatures

Due to their environmental responsivity and low toxicity, our microgels have potential to be used in **biomedical applications** including targeted drug delivery

### Parent polymer and synthesized microgel particles



## **Modelling particle shrinkage with Flory Huggins**

#### 10 12 14 16 18 20 10 12 14 16 18 20 6

**∆T (°C)** 

∆T(°C)

• Dynamic light scattering yielded the hydrodynamic radius, R<sub>h</sub>, for each of the samples synthesized at varying synthesis temperatures ( $\Delta T = T_{synthesis} - T_{C}$ ). We show these results at three solution temperatures above.

• ΔT appears to strongly impact both the swollen size and relative loading capacity of synthesized particles: • The smallest particles are obtained with a moderate  $\Delta T$ , while extreme  $\Delta T$  values produce larger particles with greater degrees of deswelling.



### 2) Particle polydispersity



Flory Huggins Mean Field Theory<sup>1</sup>:

- $k_B \left[ \frac{v_1 v}{N_A \phi^2} \left[ \left( \frac{\phi}{\phi_0} \right) 2 \left( \frac{\phi}{\phi_0} \right)^{1/3} \right] \frac{2}{\phi} \frac{2 \ln(1-\phi)}{\phi^2} \right] + \Delta S$
- In agreement with the literature<sup>2,3</sup>, we found that fixing one parameter in the Flory Huggins model produced better (more stable, more consistent) fits to the experimental data
- To study the effect of ΔT = T<sub>syn</sub> T<sub>C</sub> on particle density, v, we opted to fix either ΔH or ΔS
  Since the ratio ΔH / ΔS is a close approximation<sup>3</sup> of the constant volume phase transition temperature,  $T_V$ , the choice of fixing either  $\Delta H$  or  $\Delta S$  is inconsequential. We chose  $\Delta S$ .
- Fitting shrinkage curves with the Flory Huggins model yields three important results: • dH/dS approximation of  $T_v$  • Maximum slope measure of  $T_v$ • Particle density, v •  $T_v \approx dH/dS$  (Tanaka 1987)

- $\circ$  Intermediate  $\Delta T$ : Particle polydispersity is unchanged between swollen and collapsed states
- $\circ$  High  $\Delta$ T: Both swollen and collapsed particles are relatively polydisperse, with unpredictable trends
- CONTIN distributions reveal similar polydispersity trends
- Multi-angle DLS suggests that while polydispersity varies, all particles are essentially spherical. The difference is likely due to differences in particle structure and density.



### 3) Particle density

- We obtained the relative swollen particle densities with two methods:
  - Flory Huggins fits to DLS shrinkage curves yield a theoretical # of chains per particle, v
  - SLS experiments, when performed at 25°C with unchanged optical settings across a series of samples, yield the relative molecular weights of the swollen particles
  - Dividing the SLS-obtained  $M_W$  with the particle volume (obtained by assuming a spherical shape and using the measured R<sub>h</sub> values reported above) yields a fully-experimental swollen particle density





 $\circ$  Low  $\Delta$ T: Low density, polydisperse swollen particles that collapse to monodisperse, hard spheres above  $T_V$ 

- $\circ$  Intermediate  $\Delta T$ : High density, monodisperse particles above and below  $T_V$
- $\circ$  High  $\Delta$ T: Low density, polydisperse swollen particles that remain relatively polydisperse after collapse above  $T_V$

## **References and Acknowledgements**

### **References:**

1: Flory, P. J. **1953**. Principles of Polymer Chemistry. Cornell University Press, Ithaca.

2: Xia, Xiaohu, et al. "Formation and Volume Phase Transition of Hydroxypropyl Cellulose Microgels in Salt Solution." Macromolecules, vol. 36, no. 10, 2003, pp. 3695–3698., doi:10.1021/ma0216728.

3: Hirotsu, Hirokawa, Tanaka, et al. "Volume-Phase Transitions of Ionized N-Isopropylacrylamide Gels." J. Chem. Phys., vol. 87, no. 2, 1987, pp. 1392–1395., doi:10.1063/1.453267.

4: Phillies, G. D. J.; O'Connell, R.; Whitford, P.; Streletzky, K.A. J. Chem. Phys. 119, 9903-9913 (2003); Streletzky, K. A.; McKenna, J. T.; Mohieddine, R. J. Polym. Sci. Part B-Polym. Phys. 2008, 46, 771-781.

Acknowledgements: This project was supported by CSU's Undergraduate Summer Research Program (USRA), CSU's Faculty Research Development Award (FRD), and the NSF's REU Award #1659541.