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• Research with Dr. S (Microgels)
• Research with Dr. Kaufman (Stat Mech)
• Research with Dr. Heus (LES)
• Research with Dr. Stella-Gold (Lie Theory)

• Honors College
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• Weekly Physics Questions
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• First paper with Dr. S
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NeurIPS
2024

MLQT
2024
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What is AI?



What is AI?

A general term for any “intelligent” 
system
• Yesterday, Rule-based GOFAI
• Today, learning by GD is the rage
• Tomorrow, “zero-shot in-context 

learning by 100T param. GPT”

Useless diagram



Instead of attempting to define,
let’s look at some examples



Cool Breakthroughs in AI



OpenAI DALL-E



OpenAI DALL-E





Music Generation (Google SeaNet)

(Try suno.com!)



Algorithm Discovery



IMO



Video Generation (OpenAI Sora)



AlphaFold



AI in Physics Physics in AI



How Do Physicists Use AI?



“Experimental” Physicist

“Machine 
Learning”data

Data



Examples

• Segmentation of images
• Data filtering
• Anomaly detection
• Data generation
• Predict material properties (T_c?) Visit the IAIFI website to see 

a lot of cool research!



Gómez-de-Mariscal et. al. 2019
…“Segment Anything”…





Carrasquilla & Melko 
“Machine learning 
phases of matter”, 

Nature physics 2017



“Computational” Physicist

A machine that can be “understood” 
and “engineered”



“Computational” Physicist

• Scaling Laws
• Invent new architectures
• “Geometric” Machine Learning
• New training objectives



Maurice Weiler, Max Welling, Taco Cohen







“Theoretical” Physicist

• Understand from first principles
• Mathematical techniques and toy models
• Cf. work by Halverson, Luo, Yaida  





Use of Physics in AI

Historically
• Hopfield Networks
• Boltzmann Machines

More recently:
• Mean field approaches (and beyond)
• “Glassy” Phases 



Physics of SGD

Newton’s 2nd Law!!



Reinforcement Learning



Reinforcement Learning

Reinforcement Learning (RL) is a paradigm created to solve 
sequential decision-making problems

Basic Ideas:
• An agent interacts with an environment
• Positive behaviors are reinforced relative to negative behaviors

• Reinforcement is implemented via a reward function

• After many interaction-reinforcement cycles, the agent should learn 
to “successfully” interact with the environment 

37



CartPole-v1

Easiest RL environment with continuous state space



CartPole-v1

Easiest RL environment with continuous state space

Easy mode
 (human-friendly)

Hard mode
 (RL-“friendly”)



CartPole-v1

Easiest RL environment with continuous state space

Easy mode
 (human-friendly)

Hard mode
 (RL-“friendly”)



Breakthroughs in RL





Breakthroughs in RL







How?



Burgeoning Field with Bountiful Bridge



My  Research



Q: What is the core object in stat. mech.?

A: Partition Function



So what?, 𝒵 𝛽

• Ubiquitous in any sampling problem
• Derivatives give CGF, Sensitivity, Phase Transitions
• Free energy (solution to optimization problem)
• Bogoliubov inequality
• Donsker-Varadhan 
• Duality to entropy
• Linear algebra connections



Now what?

The partition function (normalization const.) counts things.

Counting things is hard.

Techniques have been developed in physics (and CS) to count things 
more easily:

Technique 1:
Re-weight via Boltzmann factor / “importance sampling”

and count everything!

(constrained → unconstrained!)



Stat mech of RL
• We have shown (via transfer matrix + prob. inf.) the optimal value 

function 𝑄(𝑠, 𝑎) for undiscounted case (𝛾 = 1) can be interpreted 
as a conditional free energy

• The SCGF 𝜃 is the “bulk” free energy

𝛽𝑄 𝑠, 𝑎 = −𝑁𝛽𝜃 + log 𝑢 𝑠, 𝑎 + 𝑂(… )

Where 𝑢(𝑠, 𝑎) is the Perron root’s (𝜌 = 𝑒−𝛽𝜃) corresponding left 
eigenvector.

𝜋∗ 𝑎 𝑠 ∝ 𝑢(𝑠, 𝑎)

Entropy regularized RL using large deviation theory. A. Arriojas, JA, S. Tiomkin, R. V. Kulkarni (PRR, 2023)
52



Stat mech of RL
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Stat mech of RL

  ෨𝑃 =

Entropy regularized RL using large deviation theory. A. Arriojas, JA, S. Tiomkin, R. V. Kulkarni (PRR, 2023)
54

𝑒𝛽𝑟 𝑠,𝑎

𝑒𝛽𝑟1

𝑒𝛽𝑟2

𝑒𝛽𝑟 𝑆 |𝐴|

This matrix can be used to generate the desired trajectories!



RL framework using large deviations

• Analytical solution for RL problem using large deviation theory
• Average Reward          Perron-Frobenius eigenvalue of tilted matrix
• Optimal Policy             Perron-Frobenius eigenvector of tilted matrix



Solution for Stochastic Dynamics
• Solution for stochastic dynamics is challenging because of 

constraint on system dynamics (fixed).
• Constrained problem can be solved by mapping to a distinct 

unconstrained problem with the same optimal policy



Eigenvector Learning

• Novel algorithms with promising results 
“EVAL: EigenVector-based Average-reward Learning” (under review)



Reward shaping and compositionality
• Motivated by Jarzynski relation        Set up focusing on Free Energy 

differences
• Reward shaping for entropy-regularized RL, applications for 

compositionality in RL



Relating two free energies by a third

We show that for energies related by ෨𝐸 = 𝐸 + Δ𝐸,

෨𝐹 = 𝐹 + 𝐹Δ

Where 𝐹Δ = σ𝜎 𝑝 𝜎 𝑒−𝛽Δ𝐸(𝜎)

• The free energy for a system with energy Δ𝐸 and prior distribution 
𝑝 𝜎  (the configurational distribution for the system with energy 
𝐸 𝜎  

Moreover, 𝐹Δand ෨𝐹 share the same eq. distribution:
𝑝Δ 𝜎 = 𝑝 𝜎 ∝ 𝑒−𝛽 ෨𝐸(𝜎)
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Simple Proof 

෨𝑍 = 

𝜎

𝑒−𝛽 ෨𝐸(𝜎) = 𝑍 

𝜎

1

σ𝜇 𝑒−𝛽𝐸 𝜇
𝑒−𝛽(𝐸 𝜎 +Δ𝐸 𝜎 )

෨𝑍 = 𝑍 

𝜎

𝑒−𝛽𝐸(𝜎)

σ𝜇 𝑒−𝛽𝐸 𝜇
𝑒−𝛽Δ𝐸(𝜎) = 𝑍 

𝜎

𝑝 𝜎 𝑒−𝛽Δ𝐸(𝜎)

෨𝑍 = 𝑍 ⋅ 𝑍Δ

෨𝐹 = 𝐹 + 𝐹Δ
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Gibbs-Bogoliubov Inequality

• Considering the variational form for 𝐹Δ we use the prior as the 
variational guess:

𝐹Δ = inf
𝑞

 [ Δ𝐸 𝑞 + 𝛽−1𝐾𝐿(𝑞|𝑝)]

𝐹Δ ≤ Δ𝐸 𝑝 

• Combined with the previous result, we arrive at 

෨𝐹 ≤ 𝐹 + Δ𝐸 𝑝(𝜎) 

෨𝐹 = 𝐹 + 𝐹Δ 

Gibbs-Bogoliubov 
Inequality

63



Q functions (conditional free energy)

• Same result holds, even while considering trajectories 
conditioned on initial (state, action) pairs and discounting over 
trajectories:

෨𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝐾(𝑠, 𝑎)

Where 𝐾 has an analogous definition to 𝐹Δ:
• as reward, it takes 𝑟 𝑠, 𝑎 − 𝑟(𝑠, 𝑎) 
• as a prior distribution, 𝐾 is wrt the former’s optimal policy:

 𝜋0
𝐾 ≐ 𝜋∗
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Q functions (conditional free energy)
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𝐾 and ෨𝑄 have same 
optimal policy:

𝜋𝐾
∗ = 𝜋∗



Learning via clipping based on bounds



Learning via clipping based on bounds

Use Bellman to 
“kick” 𝑄∗ only 

when stuck

Clipping excludes invalid  𝑄∗,
whereas Bellman pulls you toward 𝑄∗ 



The Future



Future Plan for RL

1. Establish a general framework / dictionary that maps between 
deep RL and NESM research

2. Exploit positive feedback loop
3. Profit



RL for stat mech (opp. direction)

• Learn free energy
• Improvements over SA
• Learn the large deviation rate function



Recent Work

• All results have relied on left eigenvector
• Right  eigenvector contains info about a “backward”/dual problem

• Can be learned simultaneously
• Forward-backward leads to detailed balance results



Career Trajectory



Thank You
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