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Reinforcement Learning

Basic Idea:
• An agent interacts with the environment, by taking actions
• Positive behaviors are reinforced relative to undesirable behaviors
• Reinforcement is implemented via a reward function

• The agent learns to maximize rewards received

MountainCar environment
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𝛾 ∈ (0,1) ensures convergence

“MaxEnt” regularization“RL: an intro.”, Sutton & Barto MIT Press



Motivating Example

“A Reinforcement Learning Method for Maximizing Undiscounted Rewards”, A. Schwartz, 1993
“Average reward reinforcement learning”, S Mahadevan, 1996
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Motivating Example

“A Reinforcement Learning Method for Maximizing Undiscounted Rewards”, A. Schwartz, 1993
“Average reward reinforcement learning”, S Mahadevan, 1996

𝑅 𝐻𝑒𝑎𝑣𝑒𝑛 < 499

𝑅 𝐻𝑒𝑙𝑙 > 501

𝛾 < 0.998 ?



Motivating Example

“A Reinforcement Learning Method for Maximizing Undiscounted Rewards”, A. Schwartz, 1993
“Average reward reinforcement learning”, S Mahadevan, 1996

𝑅 𝐻𝑒𝑎𝑣𝑒𝑛 > 501

𝑅 𝐻𝑒𝑙𝑙 < 499

𝛾 > 0.998

“Correct” behavior depends 
on choice of hyperparameter



Motivating Example

“A Reinforcement Learning Method for Maximizing Undiscounted Rewards”, A. Schwartz, 1993
“Average reward reinforcement learning”, S Mahadevan, 1996

𝑅 𝐻𝑒𝑎𝑣𝑒𝑛 = +1

𝑅 𝐻𝑒𝑙𝑙 = −1

Average 
Reward



Instead of introducing a hyperparameter 𝛾, we can optimize the 
average reward (time homogeneous):

Average-Reward Formulation
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Solution Method

• At a high level, we want to bias the agent toward trajectories with 
high reward
• Despite prior policy / dynamics typically leading to low reward

• To study the dynamics of such rare events we use large deviations 
theory
• LDT tells us (similar to eq. stat-mech) to include a Boltzmann factor

!𝟏[𝜖! = 𝐸] →!𝑒"#$!

Introduce conjugate var. to control ⟨𝐸⟩



Large Deviation Theory

“Entropy regularized RL using LDT”, A. Arriojas, JA, S. Tiomkin, and R. V. Kulkarni, PRR 2023

Normally, the (prior) dynamics will evolve the agent to low-reward states.



Large Deviation Theory
To counteract this, we can steer the agent by tilting the dynamics:

The generator of this dynamics is given by:

“Entropy regularized RL using LDT”, A. Arriojas, JA, S. Tiomkin, and R. V. Kulkarni, PRR 2023
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Solution Technique

• In the long-time limit, the dynamics of 7𝑃 is generated1 by a control 
policy 𝜋∗(𝑎|𝑠) ∝ 𝑢(𝑠, 𝑎), the left eigenvector of 7𝑃. 

• The value function is given by: 𝑄 𝑠, 𝑎 = 𝛽+, log 𝑢(𝑠, 𝑎)

• For general MDPs, the eigenvector equation is intractable, so we 
resort to learning the left eigenvector, 𝑢
• Without the need to fully know/learn the dynamics G𝑃 (“model-free”)

1For deterministic dynamics



Solution Technique

• As in DQN, we parameterize the left eigenvector of 7𝑃 with a neural 
network
• We rewrite the e.v. equation in temporal-difference form:



PPI – Unregularized / Standard RL

To solve the RL problem without entropy regularization, we use a 
method of Rawlik et. al.[2]:

[2]: “On stochastic optimal control and reinforcement learning by approximate inference”, IJCAI 2013 Rawlik, Toussaint, Vijayakumar



Results

“Off-Policy Average-Reward RL with Entropy Regularization” JA, V. Makarenko, S. Tiomkin, R. V. Kulkarni (under review)



Conclusions



Thank you!
Stas Tiomkin Volodymyr 
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