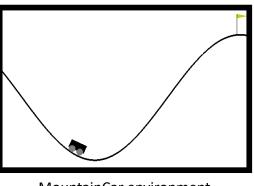
Average-Reward RL via NESM

Jacob Adamczyk¹, Argenis Arriojas¹, Stas Tiomkin², Rahul Kulkarni¹

1: University of Massachusetts Boston --- Physics Dept.

2: San Jose State University --- Computer Engineering Dept.

Reinforcement Learning

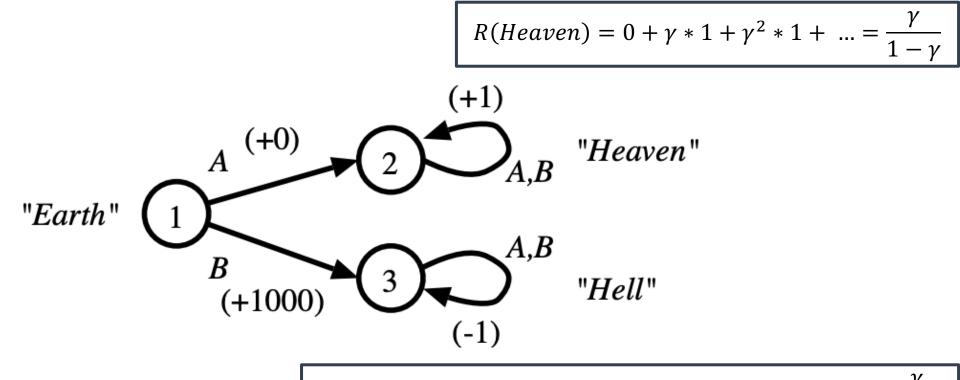


MountainCar environment

Basic Idea:

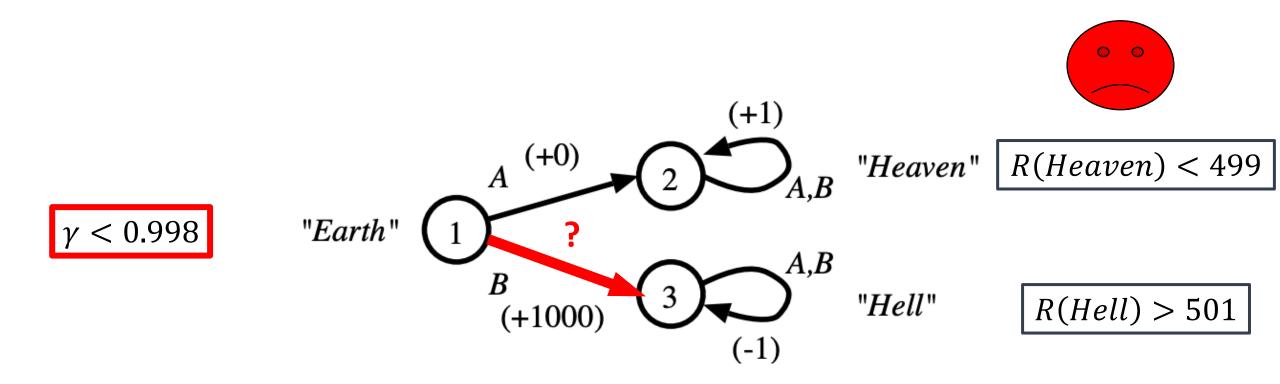
- An agent interacts with the <u>environment</u>, by taking <u>actions</u>
- Positive behaviors are reinforced relative to undesirable behaviors
 - Reinforcement is implemented via a <u>reward</u> function
- The agent learns to maximize rewards received

$$Q^*(s,a) = \operatorname*{argmax}_{\pi} \mathbb{E}_{\tau \sim p,\pi} \left[\sum_{t=0}^{\infty} \gamma^t \big(r_t + \beta^{-1} \log \pi(a_t | s_t) \big) \, | s_0 = s, a_0 = a \right]$$
"RL: an intro.", Sutton & Barto MIT Press



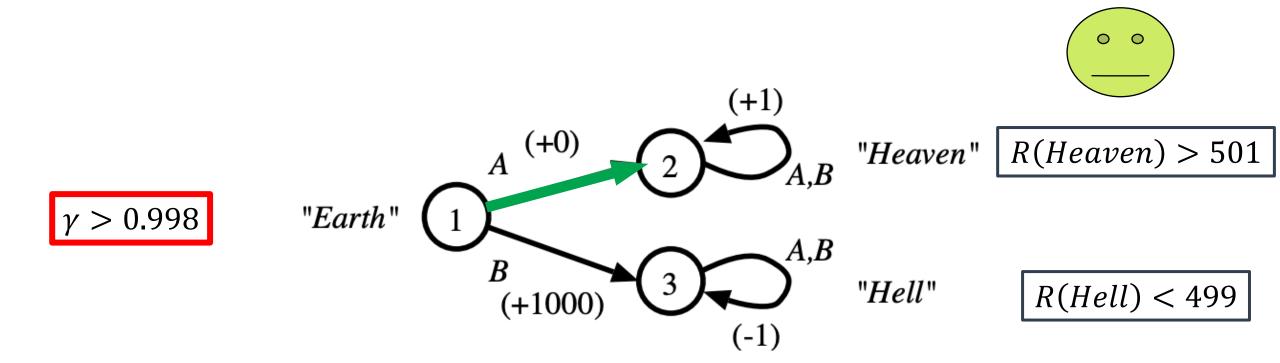
$$R(Hell) = 1000 + \gamma * (-1) + \gamma^2 * (-1) + \dots = 1000 - \frac{\gamma}{1 - \gamma}$$

[&]quot;A Reinforcement Learning Method for Maximizing Undiscounted Rewards", A. Schwartz, 1993 "Average reward reinforcement learning", S Mahadevan, 1996

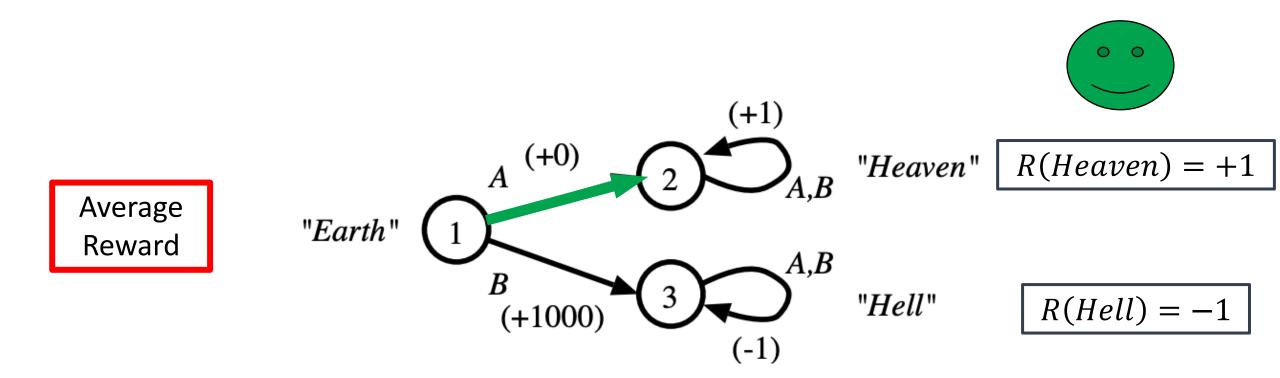


[&]quot;A Reinforcement Learning Method for Maximizing Undiscounted Rewards", A. Schwartz, 1993 "Average reward reinforcement learning", S Mahadevan, 1996

"Correct" behavior depends on choice of hyperparameter



[&]quot;A Reinforcement Learning Method for Maximizing Undiscounted Rewards", A. Schwartz, 1993 "Average reward reinforcement learning", S Mahadevan, 1996



[&]quot;A Reinforcement Learning Method for Maximizing Undiscounted Rewards", A. Schwartz, 1993 "Average reward reinforcement learning", S Mahadevan, 1996

Average-Reward Formulation

Instead of introducing a hyperparameter γ , we can optimize the average reward (time homogeneous):

$$\theta = \max_{\pi} \lim_{T \to \infty} \frac{1}{T} \mathbb{E}_{\tau \sim p, \pi} \left[\sum_{t=0}^{\infty} r_t + \beta^{-1} \log \pi(a_t | s_t) \right]$$

$$Q^{*}(s, a) = \max_{\pi} \lim_{T \to \infty} \mathbb{E}_{\tau \sim p, \pi} \left[\sum_{t=0}^{\infty} r_{t} + \beta^{-1} \log \pi(a_{t}|s_{t}) - \theta \mid s, a \right]$$

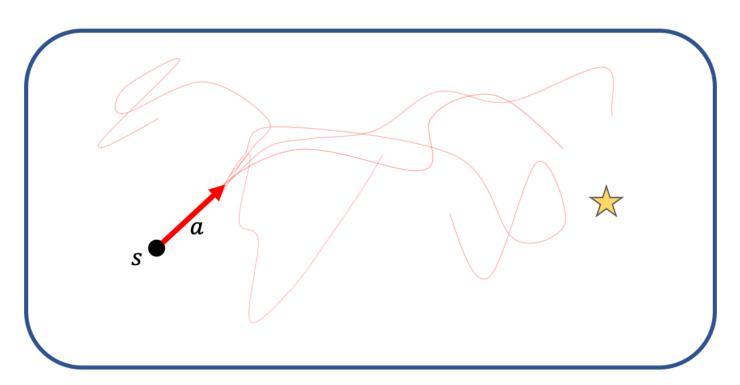
Solution Method

- At a high level, we want to bias the agent toward trajectories with high reward
 - Despite prior policy / dynamics typically leading to low reward
- To study the dynamics of such <u>rare</u> events we use large deviations theory
- LDT tells us (similar to eq. stat-mech) to include a Boltzmann factor

$$\sum \mathbf{1}[\epsilon_i = E] \to \sum e^{-\beta \epsilon_i}$$

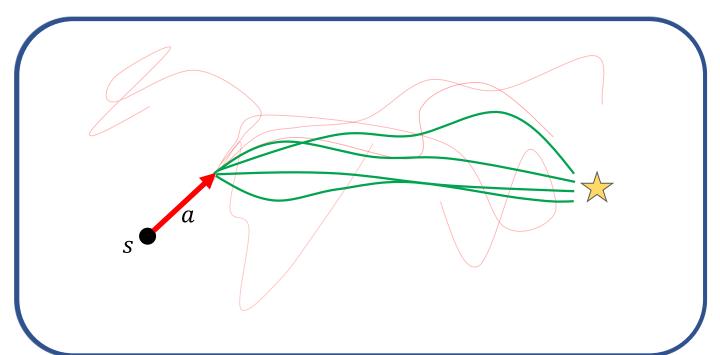
Large Deviation Theory

Normally, the (prior) dynamics will evolve the agent to low-reward states.



Large Deviation Theory

To counteract this, we can steer the agent by *tilting* the dynamics:



The generator of this dynamics is given by:
$$\widetilde{P}_{(s',a'),(s,a)} = p(s'|s,a)\pi_0(a'|s')e^{\beta r(s,a)}$$

Solution Technique

• In the long-time limit, the dynamics of \tilde{P} is generated by a control policy $\pi^*(a|s) \propto u(s,a)$, the left eigenvector of \tilde{P} .

- The value function is given by: $Q(s, a) = \beta^{-1} \log u(s, a)$
- For general MDPs, the eigenvector equation is intractable, so we resort to $\underline{\textit{learning}}$ the left eigenvector, u
 - Without the need to fully know/learn the dynamics \tilde{P} ("model-free")

Solution Technique

- As in DQN, we parameterize the left eigenvector of \tilde{P} with a neural network
- We rewrite the e.v. equation in temporal-difference form:

$$\hat{u}_{\bar{\psi}}(s,a) = e^{\beta(r(s,a)-\theta)} \underset{s' \sim p, a' \sim \pi_0}{\mathbb{E}} u_{\bar{\psi}}(s',a')$$

$$e^{\beta\theta} = \frac{1}{|\mathcal{B}|} \sum_{\{s,a,r,s'\} \in \mathcal{B}} \frac{e^{\beta r} \mathbb{E}_{a' \sim \pi_0} u_{\psi}(s',a')}{u_{\psi}(s,a)}$$

$$\left| \mathcal{J}(\psi) = \frac{1}{2} \mathop{\mathbb{E}}_{s, a \sim \mathcal{D}} \left(u_{\psi}(s, a) - \hat{u}_{\bar{\psi}}(s, a) \right)^{2} \right|$$

PPI – Unregularized / Standard RL

To solve the RL problem *without* entropy regularization, we use a method of Rawlik et. al.^[2]:

Algorithm 2 Posterior Policy Iteration (PPI)

Initialize: Prior policy π_0 , $\beta > 0$, solve budget.

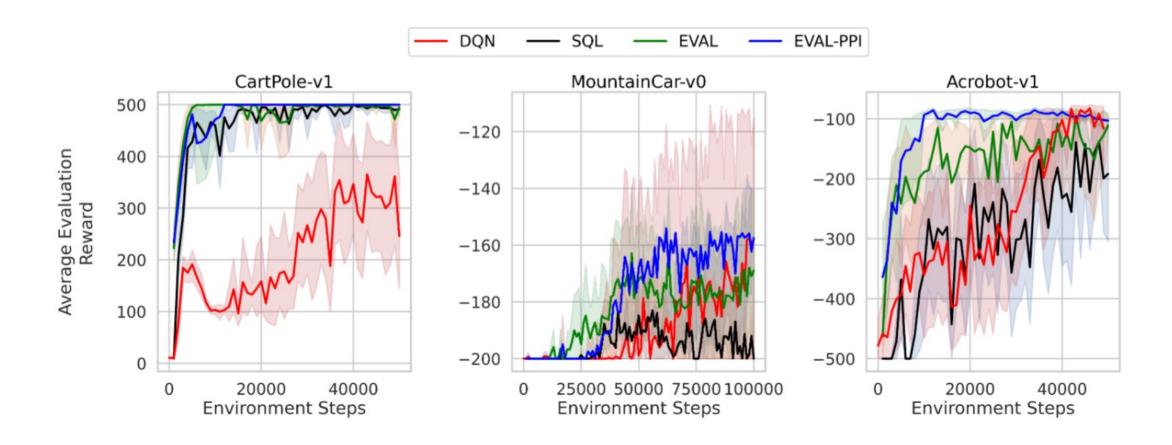
while N <solve budget **do**

$$\pi_0 \leftarrow \text{Solve}(\pi_0, \beta)$$

end while

Output: Deterministic optimal policy $\pi_{\beta=\infty}^* = \pi_0$

Results



- No discounting needed (can solve physically-relevant problems)
- PPI implemented (can solve with/wo entropy regularization)
- Comparable or outperforms SOTA in sample complexity

Future Work:

- Continuous action spaces
- Exploit eigen-structure
- Continue to explore the new avenues of deep RL research enabled by this work

Rahul Kulkarni

Stas Tiomkin

Volodymyr Makarenko

