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Example

Target “composed” taskPre-trained “primitive” tasks

{𝑄 ! 𝑠, 𝑎 , 𝑄 " 𝑠, 𝑎 } '𝑄 𝑠, 𝑎 ≤ max 𝑄 ! 𝑠, 𝑎 , 𝑄 " 𝑠, 𝑎

Motivation

Abstract
RL agents often solve a variety of tasks differing only in reward function.
One popular approach for obtaining new solutions in this setting involves
functional composition of previously solved Q-values. Our work unifies
previous examples, providing a general framework for composition in
both standard and entropy-regularized RL. For many functions, we show
the composite task’s solution is related to the known task solutions via
double-sided bounds on the optimal Q-value. We find the suboptimality
of using the zero-shot greedy policy is bounded for this class of functions.
We present clipping approaches for reducing uncertainty during training,
thereby allowing agents to quickly adapt to new tasks.
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Proposed Solution
Also holds for 

entropy-
regularized RL[2,3]
and error-prone 

Q-values!

Bounded suboptimality

Given a convex function additionally satisfying:
𝑓 𝑥 + 𝑦 ≤ 𝑓 𝑥 + 𝑓 𝑦

𝑓 𝛾𝑥 ≤ 𝛾𝑓 𝑥

The composite task’s Q-values are upper and lower bounded:

Similar results for “concave conditions” and multiple primitive Q
functions are provided.

Compositional RL
We take primitive tasks as given and wish to transfer to a
target task by functionally combining previous solutions:

Reinforcement Learning (RL) objective[1]:
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Task of InterestSolved Tasks

?
How can we close 

this gap?

Setting
�̃� 𝑠, 𝑎 ≐ 𝑓( 𝑟# 𝑠, 𝑎 , 𝑟$ 𝑠, 𝑎 , … , 𝑟% 𝑠, 𝑎 )

Ansatz
+𝑄 𝑠, 𝑎 ≈ 𝑓 𝑄# 𝑠, 𝑎 , 𝑄$ 𝑠, 𝑎 , … , 𝑄% 𝑠, 𝑎

Prior Work
This setup has been previously considered with specific
functions[3-5] and assumptions on MDP structure.
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Link to Paper:

Based on this ansatz, we present a set of functions 
whose corresponding MDPs enjoy double-sided Q-
value bounds and bounded suboptimality. 

𝑓 𝑄 𝑠, 𝑎 ≤ '𝑄 𝑠, 𝑎 ≤ 𝑓 𝑄 𝑠, 𝑎 + 𝐶(𝑠, 𝑎)
Where 𝐶 satisfies a Bellman backup equation: 

𝐶(𝑠, 𝑎) = 𝑟𝐶(𝑠, 𝑎) + 𝛾𝔼max'$ 𝐶 s′, a′

𝑟𝐶(𝑠, 𝑎) = 𝑓 𝑟(𝑠, 𝑎) + 𝛾𝔼𝑉𝑓 s′ − 𝑓 𝑄(𝑠, 𝑎)

'𝑄 𝑠, 𝑎 − '𝑄&! 𝑠, 𝑎 ≤ 𝐷 𝑠, 𝑎

Convex conditions

Primitive tasks provide a bound on the optimal value 
function for the composite task

To restrict bound violations (BVs) that occur during training, the
standard Bellman loss function is amended. Inspired by [6], we use
the following clipping methods:

• Soft clipping: Bound violations appended to loss function
• Hard clipping: Clip the proposed Q-values to respect bounds
• Test clipping: Hard clipping at evaluation time only

These clipping methods improve training while reducing BVs.
Note: True Q-values are not being learned when BVs are nonzero.


