Bounding the Optimal Value Function in Compositional RL

Jacob Adamczyk¹, Volodymyr Makarenko², Argenis Arriojas¹, Stas Tiomkin², Rahul V Kulkarni¹ ¹Physics Department, University of Massachusetts Boston, ²Department of Computer Engineering, San José State University

Abstract

RL agents often solve a variety of tasks differing only in reward function. One popular approach for obtaining new solutions in this setting involves functional composition of previously solved Q-values. Our work unifies previous examples, providing a general framework for composition in both standard and entropy-regularized RL. For many functions, we show the composite task's solution is related to the known task solutions via double-sided bounds on the optimal Q-value. We find the suboptimality of using the zero-shot greedy policy is bounded for this class of functions. We present clipping approaches for reducing uncertainty during training, thereby allowing agents to quickly adapt to new tasks.

Motivation

Reinforcement Learning (RL) objective^[1]:

$$Q^{\pi}(s,a) = \mathbb{E}_{\tau \sim p,\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t},a_{t}) \right]$$

Compositional RL

We take primitive tasks as given and wish to transfer to a target task by functionally combining previous solutions:

Setting

 $\tilde{r}(s,a) \doteq f(\{r_1(s,a), r_2(s,a), \dots, r_M(s,a)\})$

Ansatz

 $\tilde{Q}(s,a) \approx f(\{Q_1(s,a), Q_2(s,a), \dots, Q_M(s,a)\})$

Prior Work

This setup has been previously considered with specific functions^[3-5] and assumptions on MDP structure.

 $f(x+y) \le f(x) + f(y)$

